A sharp representation of multiplicative isomorphisms of uniformly continuous functions
نویسندگان
چکیده
منابع مشابه
Rings of Uniformly Continuous Functions
There is a natural bijective correspondence between the compactifications of a Tychonoff space X, the totally bounded uniformities on X, and the unital C∗-subalgebras of C∗(X) (the algebra of bounded continuous complex valued functions on X) with what we call the completely regular separation property. The correspondence of compactifications with totally bounded uniformities is well know and ca...
متن کاملa contrastive study of rhetorical functions of citation in iranian and international elt scopus journals
writing an academic article requires the researchers to provide support for their works by learning how to cite the works of others. various studies regarding the analysis of citation in m.a theses have been done, while little work has been done on comparison of citations among elt scopus journal articles, and so the dearth of research in this area demands for further investigation into citatio...
Multiplicative Functionals on Semigroups of Continuous Functions
Let X be a compact Hausdorff space. We denote by C(X) the multiplicative semigroup of all continuous real-valued functions on X. Milgram [2] has shown that C(X) as a semigroup determines X. In this paper we investigate the set %(X) of all continuous positive nontrivial2 multiplicative functionals on C(X), where C(X) has the topology of uniform convergence. If multiplication is defined pointwise...
متن کاملIsomorphisms between Spaces of Vector-valued Continuous Functions
A theorem due to Milutin [12] (see also [13]) asserts that for any two uncountable compact metric spaces Qt and Q2> t n e spaces of continuous real-valued functions C ^ ) and C(Q2) are linearly isomorphic. It immediately follows from consideration of tensor products that if X is any Banach space then QQ^X) and C(Q2;X) are isomorphic. The purpose of this paper is to show that this conclusion is ...
متن کاملA Representation of Multiplicative Arithmetic Functions by Symmetric Polynomials
We give a representation of the classical theory of multiplicative arithmetic functions (MF)in the ring of symmetric polynomials. The basis of the ring of symmetric polynomials that we use is the isobaric basis, a basis especially sensitive to the combinatorics of partitions of the integers. The representing elements are recursive sequences of Schur polynomials evaluated at subrings of the comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2016
ISSN: 0166-8641
DOI: 10.1016/j.topol.2015.10.011